LDC 2019

Longitudinal Mobile, Wearable, and Ubiquitous Data Collection from Human Subject Studies

The Workshop on Longitudinal Data Collection welcomes contributions and discussions focused on the methods, tools, and frameworks for collection, analysis, and interpretation of human subjects’ mobile, wearable, and ubiquitous data obtained over long periods.

Individuals increasingly use mobile, wearable, and ubiquitous devices capable of unobtrusive collection of vast amounts of scientifically-rich human subject personal data over long periods (months to years), and in the context of their daily life. However, numerous human and technological factors challenge longitudinal data collection, often limiting research studies to very short data collection periods (days to weeks), spawning recruitment biases and affecting participant retention over time. This workshop is designed to bring together researchers involved in longitudinal data collection studies to foster an insightful exchange of ideas, experiences, and discoveries to improve the studies’ reliability, validity, and perceived meaning of longitudinal mobile, wearable, and ubiquitous data collection for the participants.

Workshop at a Glance

Objectives

The workshop offers a professional space for researchers to share ideas, approaches, methods, tools, frameworks, and other insights that enable the collection of reliable and valid longitudinal mobile, wearable, and ubiquitous data. We aim:

  • To present and discuss state of the art methods for longitudinal mobile, wearable, and ubiquitous data collection in human subject studies.
  • To discuss ideas to minimize participants’ burden while maximizing their retention in studies contributing relevant data to support study results that will create value for researchers and participants alike.
  • To map the challenges into the implications for the design of human subject studies that will drive this line of research in the coming years.
  • To foster collaboration among researchers working in this area.

Call for Papers

The workshop welcomed contributions and discussions focused on the methods, tools, and frameworks for collection, analysis, and interpretation of human subjects’ mobile, wearable, and ubiquitous data obtained over long periods:

  • Elaboration on human, technological, and other factors influencing the design and execution of human longitudinal data collection.
  • Approaches that increase the quality of mobile, wearable, and ubiquitous data collected as part of scientific studies or identify participant groups likely to exhibit compliance.
  • Methodologies to assess and improve retention for a representative sample of participants and specific metrics, e.g., engagement, interruptions, consistency, or time to abandonment.
  • Techniques or methods for the analyses of the representatives and quality of collected longitudinal mobile, wearable, and ubiquitous data.
  • Novel findings and lessons learned from past or existing longitudinal data collection studies conducted in the user’s context, implying qualitative, quantitative, or mixed analyses.

Participation

The workshop organizers have accepted papers by peer review. The authors of the accepted papers will present their work for 10-20 minutes, answer questions from the audience, and participate in the joint discussions. We welcome all interested conference attendees to the workshop.

Format

Update: ACM has recently instructed all submissions for all tracks of UbiComp/ISWC, including the adjunct proceedings, to use the new ACM SIGCHI portrait format.

Camera-ready papers (July 12) in the new portrait template: Minimum 4 and maximum 7 pages in the new ACM SIGCHI portrait format (Word | LaTeX | Overleaf), where Word users should use the interim template downloadable from the ACM link above; LaTeX users should use the sigchi template style.

Deadlines

The deadline dates are:

  • Original: June 21 AoE
  • Notification: June 28 AoE
  • Revision: July 5 AoE
  • Notification: July 7 AoE
  • Camera-ready: July 17 AoE

Submission

The paper should be submitted as a PDF file on Precision, after selecting:

  • Society: SIGCHI
  • Conference/Journal: UbiComp 2019
  • Track: UbiComp 2019 Workshop – LDC

Review

Peer-review assessing the submission’s relevance, significance, originality, clarity, and overall quality.

Publication

Accepted workshop papers will be added to the ACM Digital Library and the UbiComp/ISWC adjunct proceedings.

Keynote

Longitudinal Research: Opportunities and Challenges in the 21st Century

Emily Gilbert PhD, Survey Manager, Centre for Longitudinal Studies, University College London

Longitudinal research is a powerful tool. By following groups of people across time, we can track how things change, or stay the same, in their lives. We can also see how past experiences affect the future. Findings from longitudinal studies have played a part in shaping the world we live in today, providing evidence for many of the choices we face as individuals, and as a society, and informing many areas of government policy. However, longitudinal studies come with their own set of challenges: they are expensive to conduct, and often bring with them a multitude of methodological, practical and analytical issues.

The Centre for Longitudinal Studies (CLS) houses four of the UK’s national longitudinal cohort studies, tracking the lives of tens of thousands of people. Each of the four studies follows large, nationally representative groups of people born in a given year. Our oldest study charts the lives of a group of Baby Boomers born in the late 1950s, while our youngest keeps up with a group born at the turn of the new century.

Increasingly, we have turned to new technologies and methodological innovations for a multitude of purposes for the cohort studies, including data collection, respondent tracking, and engaging participants in research. This includes growing use of the internet, social media, administrative data, smartphone apps and wearable technology. This talk will cover some of the opportunities and challenges associated with doing longitudinal research in the 21st century, illustrated by our experiences on the CLS cohort studies.

Emily is a Survey Manager at the Centre for Longitudinal Studies, University College London. She works on the design, development, implementation and monitoring of the British birth cohort studies. Her research interests relate to survey methodology, particularly attitude measurement and data quality, as well as survey implementation and the use of new technology and innovative methods for data collection and respondent engagement. She holds a PhD in Survey Methodology from the Institute for Social and Economic Research at the University of Essex.

Accepted Papers

Paper 1. Challenges and lessons learned from implementing longitudinal studies for self-care technology assessment. Ana Vasconcelos, Inês Lopes, Jorge Ribeiro, Ana Correia de Barros.

Whilst literature is rich in lessons learned from recruitment and retention of participants in longitudinal studies, papers sharing practical experience of implementing such studies with or about ICT are lacking. We discuss the challenges and lessons learned in four longitudinal studies with older adults and chronic disease patients for the assessment of self-care technology. Despite apparently prosaic, everyday challenges and potential threats to studies with non-mainstream audiences may be hard to anticipate. A reflection by the researchers leading these studies led to three main themes associated to studies’ timelines, which are described with practical examples.

Paper 2. Cohort analyses of in-person interactions in temporally evolving student social groups. Rahul Majethia, Gurleen Kaur, Vadlamudi Pratiksha Sharma.

In social interaction systems, the formation and testing of theories is significantly difficult because social interaction systems cannot be easily manipulated and controlled. It is also not possible to reproduce large-scale systems in a lab setting or in a short fixed time duration. Detecting short-term non-recurrent interactions between individuals is very different from studying an individual’s long term social group(s). However, over the last decade the rate of digital data availability using smartphones and wearables has increased consistently at a high pace which allows social scientists gain a comprehensive understanding of how groups form and evolve over time using recurrent in-person interaction networks. In this paper, we design a long term data-driven study on a finite student population of a residential university campus. Our aim is to study a student’s recurrent in-person interactions, or long-term social groups, between the time that one enters into a cohort, e.g. Class of 2022, and until that cohort graduates. In this sensor-data driven study using state-of-the-art interaction-detection algorithms, we monitor parameters such as social group size, formation-time and longevity. We also conduct a retrospective cohort analysis of self-reported social group parameters, e.g. social group size, time spent with each group type and associated satisfaction. Preliminary results from the same make an extremely strong case for a longitudinal study, especially indicated by the evolution of one’s social circles over a long period of time.

Paper 3. Capturing contextual morality: applying game theory on smartphones. Niels van Berkel, Simo Hosio, Benjamin Tag, Jorge Goncalves.

In order to build more fair Artificial Intelligence applications, a thorough understanding of human morality is required. Given the variable nature of human moral values, AI algorithms will have to adjust their behaviour based on the moral values of its users in order to align with end user expectations. Quantifying human moral values is, however, a challenging task which cannot easily be completed using e.g. surveys. In order to address this problem, we propose the use of game theory in longitudinal mobile sensing deployments. Game theory has long been used in disciplines such as Economics to quantify human preferences by asking participants to choose between a set of hypothetical options and outcomes. The behaviour observed in these games, combined with the use of mobile sensors, enables researchers to obtain unique insights into the effect of context on participant convictions.

Best Paper

Challenges and lessons learned from implementing longitudinal studies for self-care technology assessment. Ana Vasconcelos, Inês Lopes, Jorge Ribeiro, Ana Correia de Barros.

Schedule

The workshop covered a half day and started on September 9 at 14:00. The workshop started with a round of introduction by all attendees and a keynote speech. The organizers introduced the papers, after which the respective authors presented their work for 10-20 minutes. Following the presentations, all attendees contributed to a group discussion on the work to identify the implications for the broader research agenda. One organizer summarized and presented the lessons learned from the ongoing discussions. These findings fueled dialogue over a joint dinner. A picture from the workshop and the schedule can be seen below.

TimeActivityContents
14:00-14:20OpeningOpening notes and round of introduction by the attendees
14:20-14:50Keynote PresentationKeynote presentation on experiences with longitudinal human subject studies
14:50-15:10Paper PresentationPaper 1. presentation, discussions, and questions
15:10-15:30Paper PresentationPaper 2. presentation, discussions, and questions
15:30-16:00Coffee Break
16:00-16:20Paper PresentationPaper 3. presentation, discussions, and questions
16:20-17:05Group DiscussionGroup discussion on the work to identify the implications for broader research
17:05-17:20Lessons LearnedSummary of the lessons learned from the ongoing discussions
17:20-17:30ClosingBest paper vote and closing remarks
18:00-Joint Dinner

Organizers

Vlad Manea
PhD Student, University of Copenhagen

Research interests: mobile and wearable computing, mobile health, machine learning

Allan Berrocal
PhD Student, University of Geneva

Research interests: human-computer interaction, mobile and wearable computing, mobile health, human stress

Alexandre DeMasi
PhD Student, University of Geneva

Research interests: mobile and wearable computing, quality of experience, context awareness, machine learning

Naja Holten Møller PhD
Assistant Professor, University of Copenhagen

Research interests: computer-supported cooperative work, human-computer interaction, science and technology studies, ethnography, workplace studies

Katarzyna Wac PhD
Associate Professor, University of Geneva
Associate Professor, University of Copenhagen

Research interests: pervasive and mobile computing, behavior modeling, digital health, quality of experience, quality of life

Hannah Bayer PhD
Research Associate Professor, New York University
Chief Scientific Officer, Datacubed Research

Research interests: decision making, human conditions, big data, urban studies

Sune Lehmann PhD
Professor, Technical University of Denmark

Research interests: complex networks, social networks, social data

Euan Ashley PhD
Professor, Stanford University

Research interests: genomics, precision medicine, personalized medicine, inherited cardiovascular disease, cardiomyopathy

Contact

Please don’t hesitate to contact us at ldc2019ubicomp@gmail.com.

Updates

Twitter

To receive general updates from the workshop, follow @ldc2019ubicomp.

Email

To receive research updates from LDC 2019, Sign Up on our mailing list.

Processing the signup
Thank you! We will email you with news, updated, and findings from LDC 2019!

By signing up, you agree to share your email with Mailchimp to receive updates from LDC 2019. To opt out, use the unsubscribe link in any email you receive from us.

UbiComp Workshop on Longitudinal Data Collection | LDC 2019
September 9, 2019 | Queen Elizabeth II Centre, London, United Kingdom | Acknowledgements

Advertisements
Create your website at WordPress.com
Get started